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Abstract

This paper applies a new estimator to estimate the returns to schooling in urban China.

The identification via heteroskedasticity principle is used to control for the endogeneity

of schooling when there are no valid instrumental variables. With the urban data in 2002

wave of Chinese Household Income Projects (CHIPs), we find, after controlling for the

endogeneity of schooling, the estimates of returns to schooling over the sample period are

far below the Ordinary Least Squares estimates which is in contrast to many alternative

studies, which frequently find that the Ordinary Least Squares estimates are lower than

the Instrumental Variables estimates. This lends to support the conventional wisdom that

the endogeneity of schooling is due to the unobserved ability.
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1 Introduction

Returns to schooling provide important information about the incentives for human capi-

tal accumulation, the efficiency of resource allocation, and the distributional consequences

of differences in human capital, it may be the most commonly explored ”treatment effect”

in the empirical economics literature. Technically, the most concern about the estimation

of returns to schooling is that the endogeneity of educational choices to wages, since it will

bias the ordinary least squares (OLS) estimates. Strategies employed to account for the

endogeneity of schooling are generally based on instrumental variables (IV) estimation

(e.g., Angrist and Krueger, 1991; Card, 1999; Heckman et al., 2006).

Since the endogeneity of educational choices to wages is typically attributed to the

correlation between the unobservable factors (such as ability) which determine education

levels and wages, a common feature of various IV approaches is that they exploit the

existence of a variable(s) (IV) which is responsible for some variation in the conditional

mean of the education level, but is exogenous and unrelated to wages. Unfortunately,

such variables are not easily to exploit in the empirical research, especially when working

with Chinese dataset, to the best of our knowledge, although there are numerous studies

about the estimation of the returns to schooling in China1, none of them considers the

endogeneity problem2.

An alternative strategy to the IV approach is to exploit the variation in the condi-

tional error variances while imposing restrictions on other conditional second moments.

In a seminal paper, Vella and Verbeek (1997) provide a rank order IV procedure, Rum-

mery et al. (1999) use this strategy to estimate the returns to schooling for Australian

1Studies of the returns to schooling in China include Johnson and Chow (1997); Meng and Kidd
(1997); Maurer-Fazio (1999); Li (2003); Zhang, Zhao et al. (2005); and Luo (2007).

2One exception is Liu (2007), for estimating the Chinese city-level external returns to education, he
construted IV which is correlated with city average education and orthogonal to unobserved city-specific
characteristics based on compulsory education law. In the individual level, there is no existing research
which explored a valid IV to deal with the endogeneity problem in the estimation of Chinese returns to
schooling.
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youth. Although this rank order IV strategy provides an identifying source in the ab-

sence of exclusion restrictions, however, its value to empirical work is limited due to the

nature of the error structures it allows. More recently, Klein and Vella (2010) provide

an estimator for more general error structures that allow the heteroskedasticity in both

equations to be functions of the same variables provided the correlation coefficient for

the underlying homoskedastic error terms across equations is constant, the identification

results are based on semiparametric representations of the heteroskedasticity. Although

this semiparametric representation is theoretically appealing as the results are not reliant

on specific parametric forms of the heteroskedasticity, the programming and computation

requirements are demanding. Farré, Klein, and Vella (2010) (hereafter FKV) adapted

the estimator proposed by Klein and Vella (2010) to a parametric setting thereby making

it more easily to implement and illustrated the procedure by estimating the return to

education using a sample of individuals from the 2004 wave of the National Longitudinal

Survey of Youth.

In this paper, we employ the estimator proposed by FKV to estimate the returns

to schooling in urban China but with several modifications. Firstly, the full parametric

estimator proposed by FKV is obtained by multiple stages of nonlinear OLS estimations

which is generally inefficient and the standard errors that result in the final stage are

often incorrect, because they fail to account for estimation error in the previous stage(s).

We modify this multi-stage estimator to a special case of generalized method of moments

(GMM) estimator, efficient estimation and consistent standard errors are obtained by

using the standard formulas for the efficient choice of weighting matrix. Secondly, we

relax the heteroskedasticity form in the schooling equation to an unknown function of

some exogenous covariates and use a full nonparametric estimation in this stage. Due

to the feature of our data, the variables which affect the variance of schooling are all

discrete, the nonparametric estimation with only discrete regressors is easy to implement

and
√
n consistent (frequency estimation). With the urban data in Chinese Household
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Income Projects (CHIPs) conducted in 2002, we find, after accounting for the endogeneity

of schooling, the estimates of returns to schooling are far below the OLS estimates, which

is in contrast to many alternative studies which frequently find that the OLS estimate

is lower than the IV estimate (e.g. Kling, 2001; Cameron and Taber, 2004), Ashenfelter

et al. (1999) provide a survey of IV literature and show that the average difference

between IV and OLS is around 3% per year of schooling3. The estimates and relative

difference between our estimates and OLS estimates vary with different set of control

variables (0.046 vs. 0.073; 0.028 vs. 0.046; 0.023 vs. 0.039). As a robustness test, we

use Manski and Pepper’s (2000) nonparametric identification strategy to estimate the

upper bounds on the returns to schooling, the upper bounds are below OLS estimates

which is consistent with our main findings. Our results suggest that the OLS estimate

of returns to schooling in urban china are biased upwards, the conventional wisdom that

the endogeneity of educational choices to wages is typically attributed to the correlation

between the unobservable factors (such as ability) which determine education levels and

wages is confirmed.

The paper is organized as follows. In the next section we discuss the FKV’s identifi-

cation strategy in the returns to schooling context, our modifications are also presented.

We also outline how such procedures can be implemented. In section 3 we describe our

data, present descriptive statistics for our sample. Estimates of the returns to schooling

in urban China are presented in Section 4. Section 5 concludes.

3Ashenfelter et al. (1999) also find that the average premium of around 3% of IV over OLS may be
partly (1.8%) explained by selective reporting of results by researchers.
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2 The Model

2.1 Model and Identification

We begin by representing FKV’s approach for identification and estimation of the returns

to schooling. Although we make several modifications in the implementation, we do not

provide any new theoretical results, and this section is draw heavily from FKV. The model

contains two equations and has the following triangular form:

lnwi = x′
iβ0 + schoolingiβ1 + ui (1)

schoolingi = x′
iδ0 + vi (2)

where (1) is a semi-logarithmic specification for earnings known as extended Mincer equa-

tion and (2) is the schooling equation. wi is earnings of individual i, schoolingi is educa-

tional attainment measured as years of schooling, and xi denotes a vector of exogenous

variables such that:

E[ui|xi] = E[vi|xi] = 0 (3)

The endogeneity of schooling arises through the possible correlation between the error

terms ui and vi which renders the OLS estimates of the β’s inconsistent4. Following FKV,

we specify the same xi appear in (1) and (2) to reveal there are no available instruments

to estimate (1), actually, the variables which appear in wage equation but not appear in

schooling equation do not identify the model as IV requires variable(s) in the schooling

equation which do not appear in the wage equation.

To identify the model without any valid IV, FKV assume the presence of heteroskedas-

ticity and impose an additional restriction on the correlation between the error terms.

More explicitly, let S2
u(xi) and S2

v(xi) denote the conditional variance functions for ui and

4ui and vi may be the correlated measures of unobserved abilities.
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vi and assume:

ui = Su(xi)u
∗
i and vi = Sv(xi)v

∗
i (4)

where u∗
i and v∗i are homoskedastic error terms. The key identifying restrictions contain

two assumptions:

Assumption 1 Either Su(xi) and/or Sv(xi) are not constant and the ratio Su(xi)/Sv(xi)

is not constant across i.

Assumption 2 The conditional correlation coefficient between the homoskedastic error

terms, u∗
i and v∗i is constant:

E[u∗
i v

∗
i ] = E[u∗

i v
∗
i |xi] = ρ0 (5)

Assumption 1 states that at least one of the error terms is heterogenous, which suggests

that the contribution of unobserved factors (such as ability) to wages and schooling de-

pends on the individual’s socioeconomic factors which is a reasonable restriction with

economic implications since the presence of heteroskedasticity is largely an empirical is-

sue. Also this restriction can be tested via White or other heteroskedasticity tests. One

may argue the reality of assumption 2 since it requires that after conditioning out the

role of the xi the return to unobserved ability is constant, Klein and Vella (2010) show

that this constant conditional correlation assumption is consistent with a number of data

generating processes. Based on the fact that the distributions of the error terms does de-

pend on xi, Klein and Vella (2010) and FKV show that the identification can be achieved

by making a new error term in (1) conditional on xi:

ǫi = ui −A(xi)vi (6)
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where

A(xi) = ρ0
Su(xi)

Sv(xi)

and A(xi) is a nonlinear function of xi, this non linearity in A(xi) is a source of identi-

fication provided one can impose the appropriate structure in estimation. Substitute (6)

into (1) then we can consistently estimate β from the following controlled regression:

lnwi = x′
iβ0 + schoolingiβ1 + ρ0

Su(xi)

Sv(xi)
vi + ǫi (7)

where ǫi is a zero mean error term, and does not correlate with regressors. The main

difficulty in the estimation of (7) comes from the estimation of Su(xi), since both vi and

Sv(xi) are straightforward to estimate given the specification (2).

2.2 Estimation

To estimate the controlled regression (7), we need to specify the mechanism that the

xi enter the Su(xi) and Sv(xi) functions. Klein and Vella (2010) impose single index

structure for the conditional variance functions:

S2
u(xi) = E[u2

i |Iu(θu)] and S2
v(xi) = E[v2i |Iv(θv)] (8)

and use (iterated) semiparametric least squares to estimate the underlying parameters.

The computational demands associated with this procedure arise in the estimation of the

main equation since the semiparatetric nature of the Su(xi) function and the non linear-

ity inherent in estimating the parameters in (7) requires estimating this semiparametric

function multiple times in each round of each iteration of the optimization problem. Due

to the computational difficulties associated with estimating these functions, FKV suggest

estimate the model by treating both Su(xi) and Sv(xi) as known functions of an index
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with unknown parameters:

S2
u(xi) = exp(z′uiθu) and S2

v(xi) = exp(z′viθv) (9)

where zui and zvi are the vector of variables considered to produce the heteroskedastic-

ity in the respective equations and they can be differ from the xi. Such specification of

heteroskedasticity forms can be tested by using different parameterizations of the het-

eroskedasticity.

Based on the parameterization of heteroskedasticity in (9), FKV propose to estimate

β via iterated nonlinear OLS, which is a sequential estimator. Although FKV suggest to

employ one additional step to separates the estimation of the β from the estimation of Su,

like the usual two stage estimations, this estimation procedure is generally inefficient, and

the standard errors that result in the final stage are often incorrect, because they fail to

account for estimation error in the first stage (Newey, 1984). Since all the stages in FKV’s

estimation procedure are nonlinear least square estimations, which can be easily modified

to a standard GMM estimation framework, we propose to estimate the model parameters

through a GMM estimation. First define the moment conditions corresponding to the

least square problems of FKV’s estimation procedure, let Y = (lnw, x′, shooling, z′u, z
′
v)

′

and

g(Y, β, θ, ρ0, δ) =










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
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
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
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(10)

where

g1(Y, δ) = [schooling − x′δ0]x
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g2(Y, θv, δ) = [ln(schooling − x′δ0)
2 − z′vθv]zv

g3(Y, β, θu, δ) = [ln(lnw − x′β0 − schoolingβ1)
2 − z′uθu]zu

g4(Y, β, θ, ρ0, δ) = [lnw − x′β0 − schoolingβ1 − ρ0
√

exp(z′uθu)
[schooling − x′δ0]
√

exp(z′vθv)
]








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
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



x

schooling

√
exp(z′

u
θu)[schooling−x′δ0]√
exp(z′

v
θv)



















Then from the model assumptions, it is clearly that

E[g(Y, β, θ, ρ0, δ)] = 0 (11)

Thus the joint GMM estimator takes the form

β̂, θ̂, ρ̂0, δ̂ = arg min
{β,θ,ρ0,δ}

n
∑

i=1

g(Yi, β, θ, ρ0, δ)
′Ωn

n
∑

i=1

g(Yi, β, θ, ρ0, δ) (12)

We refer to this estimator as FGMM, since here we use a fully parametric specification.

Efficient estimation and consistent standard errors are obtained by using the standard

formulas for the efficient choice of Ωn. Given currently existing computing power and

readily available automated GMM estimation programs, this general procedure should be

broadly applicable, especially since the iterated OLS estimator can themselves provides

good, consistent starting values for estimation. Also, to minimize or avoid numerical

searches if necessary, asymptotic efficiency can be obtained without iterating to conver-

gence. Newey and McFadden (1986) show that asymptotic efficiency is obtained by just

doing one iteration of the efficient GMM estimator.

To avoid the potential misspecification of the conditional variance function S2
v(xi),
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we also propose to use the nonparametric specification instead of the parametric one for

S2
v(xi):

S2
u(xi) = exp(z′uiθu) and S2

v(xi) = E[v2i |zvi] (13)

Although FKV also use a semiparametric estimator for S2
v , our use of nonparametric

estimation is differ from their setting which is due to the special feature of our dataset

and empirical model setting, which may not be general as their framework. A interesting

feature of our empirical model is that variables in zv are all discrete, which makes the

nonparametric estimation of E[v2i |zvi] be simple and without the usual curse of dimension

of the nonparametric estimation. The frequency estimator for E[v2i |zvi] when zv contains

only discrete variables takes the form:

̂E[v2i |zvi] =
1

n

n
∑

i=1

v2i I(zvi = zv)/p̃(zv) (14)

where

p̃(zv) =
1

n

n
∑

i=1

I(zvi = zv) (15)

is the estimated probability function. With this
√
n consistent ̂E[v2i |zvi] we can use the

following iterated estimation procedure to get the final estimates of the underlying pa-

rameters:

1. Regress schoolingi on xi to obtain a consistent estimate of the residual which is

denoted by v̂i.

2. Estimate Ŝv through frequency estimation (14), and Ŝv =

√

̂E[v̂2i |zvi].

3. Using v̂i and Ŝv estimate the model parameters through a iterative procedure. For a

given value of β, say βc, define the residual ui(βc). Using this value of ui(βc), regress

ln(u2
i (βc)) on zui get θcu and compute Ŝui(βc) as

√

exp(z′viθcu). Then estimate ρ0c
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as:

min
ρ0c

n
∑

i=1

(

ui(βc)− ρ0cŜui(βc)
v̂i

Ŝv(xi)

)2

(16)

The final estimates of βc, ρ0c, and θcu are those that minimize (16) and are obtained

through a standard iterative procedure. The consistent standard errors are obtained

via bootstrap.

We refer to this estimator as INPOLS.

3 Data

The data used in this paper is the survey of urban households which comes from 2002

wave of Chinese Household Income Projects (CHIPs) conducted by Chinese Academy

of Social Sciences (CASS). This survey contains 20632 persons from 6835 households in

12 provinces that are broadly representative of China’s rich regional variation. To focus

on wage determination in the labor market, we restrict our sample to workers engaged

in wage employment. Following standard practice, we exclude employers, self-employed

individuals, retirees, students, and household workers (e.g. Coleman, 1993; Mwabu and

Schultz, 1996). Moreover, as China’s Labor Law sets the minimum working age at 16, we

exclude all those younger than 16. Because most workers retire by age 60 in accordance

with China’s mandatory retirement age, individuals older than 60 also are excluded. Wage

income consists of four major components, namely, basic wage, bonus, subsidies and other

labor-related income, Figure 1 reports the empirical distribution of wage and logarithmic

value of wage. The major control variables in the wage equation are experience (exper)

which is a worker’s years of potential labor market experience measured as age minus

schooling minus six, the square of exper, gender (gender) which is a dummy variable

capturing the wage differential between men and women, marriage (marriage) which is

also a dummy variable capturing the effect of with-spouse, and party (party) which is
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Figure 1: Empirical Distribution of Income
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a dummy variable capturing the wage differential between any party membership and

non-party. Table 1 reports the descriptive statistics for these variables.

One desirable feature of 2002 CHIPs data is that it contains detailed information for

the head of household and her spouse’s parents, which makes us can control the parents’

features in the estimation of the returns to schooling. Moreover, the parents’ charac-

teristics also have impact on years of education attainment, we control these variables in

both wage and schooling equations, while containing these variables means that we should

match the individual with her parents, which restricts our sample size to 8453. Beyond

the parents’ characteristics, we also consider controlling the employment characteristics,

which includes type of employment, ownership, professional nature and industry. Another

set of control variables is the Region which is a set of 11 provincial dummy variables. A

detailed definition of these control variables is reported in Table 2.
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Table 1: Descriptive Statistics

Variable N Mean Std. Dev. Min Max

income 8453 12210.780 7196.130 1947 44999.980

lincome 8453 9.247 0.582 7.574 10.714

schooling 8453 11.299 2.989 0 23

exper 8453 24.763 9.106 −5 50

gender 8453 0.556 0.497 0 1

marriage 8453 0.951 0.216 0 1

party 8453 0.330 0.470 0 1

4 Estimation Results

For estimating the returns to schooling in urban China using the procedures described

above, we use the specific model:

lnwi = x′
wiβ0 + schoolingiβ1 + ui (17)

schoolingi = x′
siδ0 + vi (18)

where xsi ⊆ xwi indicates that we have no valid instrumental variables for the endogenous

variable schooling. The existing researches using CHIPs data all ignore the endogenous

problem, here we use the control function approach to deal with this problem and compare

the difference with the usual OLS estimates. The explanatory variables are those com-

monly employed in the estimation of returns to schooling which capture the individual’s

background, parents’ characteristics and employment characteristics. For the schooling

equation, we set xsi be the parents’ characteristics, which includes parents’ party member-

ship, education level and professional nature. While for the wage equation, we consider

three specifications for xwi, the common variables among them are the experience, square

of experience, individual’s party membership, gender and individual’s marriage status,

the difference among them is that the first specification also consider the parents’ char-
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Table 2: Definition of Control Variables

Employment Characteristics

Type Ownership Professional Nature Industry

wa1 ow1 wpro1 industry1

I(profit enterprises) I(state-owned) I(person in charge)

wa2 ow2 wpro2 :

I(loss-making enterprises) I(collective) I(technical staff)

wa3 ow3 wpro3 industry15

I(government departments) I(private) I(skilled workers)

wa4 ow4

I(institutions) I(foreign∗)

Parents Characteristics

Education Level Professional Nature Party

Farther Mother Farther Mother Farther Mother

feduc1 meduc1 fwpro1 mwpro1 fparty mparty

I(university and above) I(person in charge) I(party∗∗)

feduc2 meduc2 fwpro2 mwpro2

I(college) I(technical staff)

feduc3 meduc3 fwpro3 mwpro3

I(secondary) I(skilled workers)

feduc4 meduc4

I(high School)

feduc5 meduc5

I(Junior)

*Foreign includes the joint venture; **party includes communist and other parties
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acteristics, the second specification considers parents’ characteristics and employment

characteristics, while the last specification adds the region dummy variables. For differ-

ent sets of control variables, we report the OLS5, FGMM and INPOLS estimates. Note

that although the GMM estimation only contains one step, we report the estimates for

different equations separately.

4.1 Schooling Equation

We first discuss the FGMM estimates of the schooling equation which are reported in the

second column of Table 3. The estimates are consistent with those in the existing educa-

tional literature. Parental education and mother’s professional nature have an important

positive effect on years of education, while the impact of father’s professional nature is

not significant.

The control function approach introduced above requires at least one of the equations’

error terms to be heteroskedastic. Using the estimates from Table 3 we examine the

presence of heteroskedasticity of the schooling equation. The statistic for the White test

is 219 and that for the Breusch-Pagan, using all the explanatory variables in the model,

is 162.93. These values clearly reject the null hypothesis of homoskedastic errors.

The next step is to determine the form of heteroskedasticity in the schooling equation,

S2
vi. An examination of the results of the heteroskedasticity tests suggests that the main

variables responsible for the heteroskedasticity are gender and mother’s educational level.

Though we suspect that some of the variables in the schooling model may not affect the

error variance we do not have strong arguments to exclude them from the heteroskedastic

index, since the joint significance can not be rejected. Accordingly in estimating the con-

ditional variance function for the schooling equation we use all variables which appeared

in the conditional mean (i.e., zvi = xsi).

5For schooling equation we only use OLS to do the usual test of the presence of heteroskedasticity.
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Table 3: Parametric Estimation for Schooling Equation

Variable Conditional Mean Conditional Variance

estimates SD estimates SD

sex 0.2604 (0.0592) 0.2002 (0.0433)

fparty 0.1886 (0.0623) −0.1223 (0.0442)

mparty 0.0617 (0.0589) −0.0179 (0.0456)

feduc1 1.1160 (0.1773) −0.1674 (0.1302)

feduc2 1.4667 (0.1727) −0.1691 (0.1316)

feduc3 1.1902 (0.1489) −0.1032 (0.1097)

feduc4 0.8116 (0.1206) −0.3120 (0.0848)

feduc5 0.5430 (0.0848) −0.1567 (0.0589)

meduc1 1.1869 (0.3281) −0.2521 (0.0627)

meduc2 0.6731 (0.2731) −0.2544 (0.0938)

meduc3 0.7274 (0.1914) −0.1931 (0.0622)

meduc4 0.7877 (0.1483) 0.3204 (0.2363)

meduc5 0.5273 (0.0980) −0.0416 (0.2049)

fwpro1 0.1868 (0.0918) 0.1856 (0.1301)

fwpro2 0.1893 (0.1345) 0.0475 (0.1080)

fwpro3 −0.0182 (0.0898) −0.0825 (0.0741)

mwpro1 0.5056 (0.1142) −0.1396 (0.0892)

mwpro2 0.6163 (0.1640) 0.0215 (0.1148)

mwpro3 0.1764 (0.1064) −0.1477 (0.0774)

constant 10.3819 (0.0659) 1.1036 (0.0441)

Test for Heteroskedasticity (Based on OLS) statistics

White 219

Breush-Pagan 162.93
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Figure 2: Parametric and Nonparametric Fits of Conditional Variance
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The nonlinear least squares estimates of S2
vi are reported in the third column of Table

3. Moreover, the standard errors which come from the efficient GMM estimation are not

suffer from the usual multi-stage problem. We also consider the nonparametric estimation

of the conditional variance S2
vi, the nonparametric fit of S2

vi is reported in Figure 2, and

for comparison, we also report the parametric fit of this conditional variance in Figure 2.

The mean square error (MSE) for the nonparametric fit is 169 while for the parametric

fit is 223, which means that the we should use a nonparametric version instead of the

parametric one for the conditional variance. But as can be found in the final estimates for

the returns to schooling in the wage equation, the impact of the choice of the specification

for conditional variance is not important if the number of control variables is rich enough,

this also suggests FKV’s parametric model.
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4.2 Wage Equation

We now turn to the estimation of the primary equation. As noted above, we consider

three sets of control variables for the wage equation, the common variables among them

are the experience, square of experience, individual’s party membership, gender and in-

dividual’s marriage status. In addition to these variables, the first specification includes

parents’ characteristics, the second specification includes parents’ characteristics and em-

ployment characteristics, the last specification considers all these features but adds the

region dummy variables.

Before considering the control function estimates we briefly discuss the OLS estimates

reported in the second columns of Table 4 to 6. The primary feature of interest is the

estimated impact of education on earnings which are 0.071, 0.0459 and 0.0386 for three

specifications respectively. The magnitude of these coefficients are in line with the previ-

ously reported OLS estimates in Luo (2007) which use the same data.

In implementing our estimation strategy it is first necessary to specify the variables

entering the heteroskedasticity index of the wage equation, zui. Although we experimented

with different choices for the variables, the results reported here are based on all the

variables in xwi and a constant (i.e. zui = xwi|1). The third columns of Table 4 to 6

present the estimates of the coefficients in the wage equation obtained using the method

which we refer to as FGMM in section 2.2. And the fourth columns of Table 4 to 6 present

the estimates of the coefficients in the wage equation obtained using the method which

we refer to as INPOLS in section 2.2.

Before focusing on the estimated impact of schooling on wages we highlight a number

of the interesting features of this table. First, the OLS, FGMM and INPOLS estimates for

the exogenous variables are generally quite similar. All these estimates provide evidence

of a small marriage premium and a gender differential. The impact of party membership

is positive and significant which states the importance of political identity in China. The
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Table 4: Estimation for Wage Equation

(Only control the Parents Characteristics)

OLS FGMM INPOLS

schooling 0.0731 0.0420 0.0463

(0.0025) (0.0121) (0.0076)

exper 0.0179 0.0181 0.0172

(0.0032) (0.0032) (0.0032)

exper2 −0.0001 −0.0001 −0.0001

(6.22e− 05) (6.38e− 05) (6.32e− 05)

gender 0.1675 0.1764 0.1751

(0.0115) (0.0126) (0.0120)

marriage 0.0260 0.0269 0.0288

(0.0333) (0.0335) (0.0333)

party 0.1211 0.1243 0.1225

(0.0128) (0.0136) (0.0135)

ρ0 0.1794 0.2878

(0.0672) (0.0775)

constant 7.8744 8.1976 8.1613

(0.0590) (0.1411) (0.1010)

Test for Heteroskedasticity (Based on OLS) Statistics

White 358.32

Breush-Pagan 96.61

joint significance test for different sets of control variables in different settings all suggest

the significance of these variables, and when the number of control variables increases,

the impacts of all the control variables decrease. Finally, the test of the presence of het-

eroskedasticity based on the OLS estimation suggests the existence of heteroskedasticity

in the wage equation.

The key feature our results reported in Table 4 to 6, however, is the difference among

the estimates of the returns to schooling. While the OLS estimates were 0.071, 0.0459

and 0.0386, when accounting for the endogeneity of schooling, the FGMM estimates
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Table 5: Estimation for Wage Equation

(Control the Parents and Employment Characteristics)

OLS FGMM INPOLS

schooling 0.0459 0.0278 0.0280

(0.0025) (0.0109) (0.0066)

exper 0.0234 0.0241 0.0235

(0.0030) (0.0029) (0.0029)

exper2 −0.0003 −0.0003 −0.0003

(6.02e− 05) (5.79e− 05) (5.77e− 05)

gender 0.1376 0.1431 0.1429

(0.0122) (0.0123) (0.0117)

marriage 0.0085 0.0089 0.0102

(0.0320) (0.0310) (0.0310)

party 0.0667 0.0678 0.0673

(0.0121) (0.0129) (0.0129)

ρ0 0.1171 0.2157

(0.0682) (0.0758)

constant 8.0311 8.2151 8.2186

(0.0669) (0.1333) (0.0990)

Test for Heteroskedasticity (Based on OLS) Statistics

White –

Breush-Pagan 271.66
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Table 6: Estimation for Wage Equation

(Control the Parents, Employment Characteristics and Regions)

OLS FGMM INPOLS

schooling 0.0386 0.0234 0.0232

(0.0024) (0.0098) (0.0062)

exper 0.0186 0.0190 0.0185

(0.0029) (0.0028) (0.0028)

exper2 −0.0002 −0.0003 −0.0002

(5.7e− 05) (5.47e− 05) (5.45e− 05)

gender 0.1567 0.1612 0.1610

(0.0104) (0.0111) (0.0107)

marriage 0.0583 0.0589 0.0603

(0.0291) (0.0286) (0.0286)

party 0.0756 0.0767 0.0763

(0.0118) (0.0117) (0.0115)

ρ0 0.1081 0.2032

(0.0674) (0.0782)

constant 7.9472 8.1031 8.1095

(0.0689) (0.1218) (0.0928)

Test for Heteroskedasticity (Based on OLS) Statistics

White –

Breush-Pagan 85.34
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are 0.042, 0.0278, and 0.0234, the INPOLS estimates are 0.0463, 0.0280 and 0.0232.

Moreover while there is some loss in statistical significance, in comparison to the OLS

estimate, the FGMM and INPOLS estimates are statistically significant at conventional

levels of testing. Finally the estimate of the correlation coefficient, ρ0, is positive and

statistically significant, indicating that schooling is not exogenous. Our results suggest,

after accounting for the endogeneity of schooling, the estimates of returns to schooling

are far below the OLS estimates which is in contrast to many alternative studies which

frequently find that the OLS estimate is lower than the IV estimate. Our results are

consistent with the conventional wisdom that the OLS estimates of returns to schooling

are biased upwards, and the endogeneity of educational choices to wages is typically

attributed to the correlation between the unobservable factors (such as ability) which

determine education levels and wages.

The estimates and relative difference between our estimates and OLS estimates vary

with different sets of control variables, and when the control variables are rich enough,

the difference between FGMM and INPOLS estimates is quite small which suggests that

the parametric model of the conditional variance is acceptable in the empirical research,

while the INPOLS procedure can be used as the robust check or test.

4.3 Robust Analysis

Although our empirical results confirm the conventional wisdom that the OLS estimates

of returns to schooling are biased upwards, many of the IV studies show that returns

are often considerably larger than those found by OLS (e.g. Kling, 2001; Cameron and

Taber, 2004). As a robust test, we make use of the nonparametric identification strategy

proposed Manski and Pepper (2000) to estimate the nonparametric upper bounds on the

average treatment effect of one year of education on earnings (the returns to schooling).

The logic is that the true return should not be larger than the nonparametric upper
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bound, and if the OLS estimates are larger than the estimated upper bounds, we can

conclude that the OLS estimates are biased upwards.

The average treatment effect of one year of education on earnings can be defined as

Γ(s, t) =
∆(s, t)

t− s
(19)

where

∆(s, t) = E[y(t)]−E[y(s)]

for s < t. s and t are years of education and y(·) is log-earnings. Under assumptions

of monotone treatment response and monotone treatment selection6, Manski and Pepper

(2000) derive the upper bound on ∆(s, t) as

∆(s, t) =
∑

u<s

(E[y(t)|z = t]−E[y(t)|z = u]) · Pr[z = u]

+(E[y(t)|z = t]−E[y(t)|z = u]) · Pr[s ≤ z ≤ t]

+
∑

u>t

(E[y(t)|z = u]−E[y(t)|z = s]) · Pr[z = u]

(20)

Then the upper bound on the returns to schooling will be

Γ̄(s, t) =
∆̄(s, t)

t− s
(21)

Table 7 and Figure 3 report the results of such analysis of our data. Comparing with

6 years of schooling, the estimated upper bounds are below the OLS estimates except for

7 and 8 years of schooling, which suggests that in urban China, the OLS estimates of

returns to schooling are biased upwards and when accounting for the endogenous bias,

6The monotone treatment response assumption states that for any t2 ≥ t1, there is y(t2) ≥ y(t1),
while the monotone treatment selection assumption states that for any u2 ≥ u1, there is E[y(t)|z = u2] ≥
E[y(t)|z = u1], where z is the realized years of schooling.
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Table 7: Nonparametric Upper Bounds on Returns to schooling

s t Upper Bound s t Upper Bound

6 7 0.2129 6 15 0.0515

6 8 0.1039 6 16 0.0582

6 9 0.0770 6 17 0.0480

6 10 0.0684 6 18 0.0477

6 11 0.0531 6 19 0.0387

6 12 0.0494 6 20 0.0594

6 13 0.0575 6 21 0.0350

6 14 0.0517 6 22 0.0435

OLS 0.0886

the estimates should be below the OLS estimates, that is our main results based on the

control function approach.

5 Conclusion

In this paper, we employ a new estimator to estimate the returns to schooling in urban

China. The endogeneity of schooling is controlled using only the natural heteroscedas-

ticity of earnings and schoolings. Based on the full parametric framework proposed by

FKV, which is to exploit the dependence of the errors on exogenous variables (e.g. het-

eroscedasticity), we propose two estimators. One is the GMM estimator using the same

specification as FKV but take accout of the problem of multi-stage (sequential) estima-

tors, efficient estimation and consistent standard errors are obtained by using the standard

formulas for the efficient choice of weighting matrix. Another estimator which we refer

to as INPOLS relaxes the heteroskedasticity form of schooling to an unknown function

of exogenous variables. Unlike the usual IV approach, this control function method does

not rely on exclusion restrictions.

We apply the method to the urban data in 2002 wave of Chinese Household Income
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Figure 3: Nonparametric Upper Bounds on Returns to schooling

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0.
05

0.
10

0.
15

0.
20

Upper Bounds on RTS Γ(s, t), s = 6

t

R
T

S

Upper Bounds
OLS Estimate

Projects (CHIPs) and find that the estimates of returns to schooling are 0.0463, 0.0280

and 0.0232 (depend on different sets of control variables). These estimates are far below

the OLS estimates, which are 0.071, 0.0459 and 0.0386 correspondingly. Our result means

that the OLS estimates are biased upwards which is in contrast with many alternative

studies which frequently find that the OLS estimate is lower than the IV estimate. This

lends to support the conventional wisdom that the endogeneity of schooling is due to the

unobserved ability, since the estimated correlation coefficients between errors are signi-

ficiantly positive. Also, the small difference between the full parametric estimation and

the one which includes nonparametric part indicates that the full parametric framework

proposed by FKV is acceptable in the empirical research. We check the robustness of

our estimation by applying the nonparametric identification strategy proposed by Manski

and Pepper (2000) to the same dataset, the result that OLS estimates are larger than the

upper bounds is consistent with our main findings.
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